

ATHIC 2014 @ Osaka University

Study of Performance for Particle Identification at sPHENIX

Kazuya Nagashima for the PHENIX collaboration Hiroshima University

- sPHENIX
- schedule
- Physics motivation
- Electron identification
- calculate electron efficiency and pion rejection
- Optional Preshower detector
- Physics motivation
- Optimization shape of the preshower cell
- Summary

BNL schedule

2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Run 14	Run 15	Run 16	Shut down CeC	BES II	BES II	Shut down sPHENIX installation	sRun 1	sRun 2	Shut down eRHIC		eRun 1
	sPHENIX										

Upgrade points from PHENIX

- Larger acceptance and Fast readout $(\phi=2\pi,\,|\eta|<1)$
- Additional tracking for measurement of Upsilon
- EMCal and HCal for measurement of Jets
- (Optional Preshower detector for PID)

✓ Physics motivation

- QGP screening study by measuring upsilon states etc.
- Jet quenching study via full (tagged) jet reconstruction.
- Jet fragmentation function modification.
- Nuclear suppression of π^0 yields up to $p_T = 40 \text{GeV/c}$
- γ-jet correlation

- Detailed physics motivation
 - K.Shigaki, 8/08 morning

 Next stages of PHENIX for enhanced Physics with Jets, Quarkonia, and Photons J

✓ Electron identification with E/p cut

「Simulation」

- Generate $4 \text{GeV } e^-$ and π^- ,
- Magnetic field off,
- With Hijing background (AuAu 10%C in B-off)

[single event]

• E/p cut

(electron mean energy \pm 15%)

- electron efficiency of 0.99
- pion efficiency of 0.12
- pion rejection of 8.0

✓ Electron identification with HCal

「Simulation」

- 4GeV e^- and π^- ,
- Magnetic field off,
- Calculate efficiency with HCal

Inner HCal distribution

✓ Electron identification with Hcal cut

Pion rejection of 90 with Inner HCal cut: electron eff. 88%

Pion rejection =
$$\frac{Electron\ efficiency}{Pion\ efficiency}$$

Pion rejection with HCal cut

Mass distribution by simulation

S/B at all states is order 1

✓ Pre-Shower

「Pre-Shower detector」

- Pb convertor + Silicon
- $\Phi \sim 2\pi$, $\eta \pm 0.5$, radius = 90cm

Motivation of Pre-Shower

- γ-jet correlation
- Distinguish direct photon and 2γ from high $p_T \pi^0$
- High p_T suppression
- High $p_T \pi^0 R_{AA}$ up to 40 GeV/c
- Upsilon measurement
- Electron identification

✓ Opening angle of 40GeV/c π^{0}

「Monte carlo simulation」

- 40 GeV π^0 -> 2 γ ,
- Calculate Opening angle of 40GeV/c π^0
- Lower limit of 6.7 × 10⁻³ [rad]
- Decompose opening angle to phi and eta

Lower limit of 40GeV pion opening angle

phi vs eta (opening angle of 40 GeV Pi0)

- Optimize shape and size of cells
- The number of preshower cells is 0.7M (phi \times eta = 10⁻⁵)
- We assume the preshower as <u>perfect detector</u>
- Slime line shape(phi=0.001, eta = 0.01) is the highest efficiency

Detection efficiency

- 2 γ are separated by one cell or more

Constant area (phi \times eta = 10^{-5}) phi 0.001 -> 0.01 eta 0.01 -> 0.001

Detection efficiency of 40GeV pi0

Hit map at Preshower and EMCal

[Geant4]

- Pre-Shower and EMCal hit map
- 40GeV pion,
- ☐ Pre-Shower
- Size of cell
 (dφ=0.001,dη=0.01)
- Thickness = $1X_0$
- 2γ are separated
- EMCal
- Size of cell
 (dφ=0.024,dη=0.024)
- Thickness = $18X_0$
- 2γ are merged

「Geant4」

- Evaluated detection efficiency at slim line shape under realistic condition (phi = 0.001, eta = 0.01)
- Studied dependence of convertor thickness $(1.0^2.0X_0)$
- In more than 15GeV/c, 1.0 radiation length is higher than other

「Geant4」

- Evaluated detection efficiency at slim line shape under realistic condition (phi = 0.001, eta = 0.01)
- Studied dependence of convertor thickness $(1.0^2.0X_0)$
- In more than 15GeV/c, 1.0 radiation length is higher than other

√ Summary

- Pion rejection is 8.0 with E/p cut (electron eff. of 99%)
- Pion rejection is 90 with HCal cut (electron eff. of 90%)
- Upsilon is measurable with 90 pion rejection and 90% efficiency
- Slime line shape is the highest detection efficiency
- Define cell size. phi = 0.001, eta = 0.01
- Preshower convertor thickness of 1 radiation length is the best in case of identifying π^0 in more than 15GeV/c.

✓ Upsilon mass resolution

SPACAL distribution with Hijing background

- Evaluated detection efficiency at slim line shape (phi = 0.001, eta = 0.01)
- Studied dependence of convertor thickness
 - 1.0~2.0*X*₀
- Defined detection efficiency
 - Secondary deposit > Max deposit/3
 - Secondary deposit is away one cell or more from max deposit.

Detection efficiency of π^0

Average opening angle

✓ Opening angle of high p_T π^0

- 40 GeV pion -> 2γ,
- Lower limit of 6.7 × 10⁻³ [rad]
- Decompose opening angle to phi and eta

Lower limit of 40GeV pion opening angle

- Evaluated detection efficiency at slim line shape (phi = 0.001, eta = 0.01)
- Studied dependence of convertor thickness
 - $-1.0^{2}.0X_{0}$
- Defined detection efficiency
 - Secondary deposit > Max deposit/3
 - Secondary deposit energy away one cell or more from max deposit.

Detection efficiency of π^0

Count/Event of direct γ and pi0

✓ EMCal1 vs EMCal2

EMCal1 -> Layer 1~25 EMCal2 -> Layer 26~40